
PHYSICAL REVIEW E 73, 066101 �2006�
Failure process of a bundle of plastic fibers
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We present an extension of fiber bundle models considering that failed fibers still carry a fraction 0��
�1 of their failure load. The value of � interpolates between the perfectly brittle failure ��=0� and perfectly
plastic behavior ��=1� of fibers. We show that the finite load bearing capacity of broken fibers has a substantial
effect on the failure process of the bundle. In the case of global load sharing it is found that for �→1 the
macroscopic response of the bundle becomes perfectly plastic with a yield stress equal to the average fiber
strength. On the microlevel, the size distribution of avalanches has a crossover from a power law of exponent
�2.5 to a faster exponential decay. For localized load sharing, computer simulations revealed a sharp transition
at a well-defined value �c from a phase where macroscopic failure occurs due to localization as a consequence
of local stress enhancements, to another one where the disordered fiber strength dominates the damage process.
Analyzing the microstructure of damage, the transition proved to be analogous to percolation. At the critical
point �c, the spanning cluster of damage is found to be compact with a fractal boundary. The distribution of
bursts of fiber breakings shows a power-law behavior with a universal exponent �1.5 equal to the mean-field
exponent of fiber bundles of critical strength distributions. The model can be relevant to understand the shear
failure of glued interfaces where failed regions can still transmit load by remaining in contact.
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I. INTRODUCTION

The failure of heterogeneous materials under various
types of external loading conditions has attracted continuous
scientific and technological interest during the past decade
�1,2�. Both the macroscopic strength and the process of dam-
aging of loaded specimens strongly depend on the disordered
microscopic properties of the material. Hence, most of the
theoretical studies are based on discrete models which can
account for the disordered material properties and their inter-
action with the inhomogeneous stress field naturally arising
in a damaged specimen. Fiber bundle models �FBM’s� are
one of the most important theoretical approaches in this field
�3�, which also served as the basis for the development of
more complicated micromechanical models of fracture
�4–6�. In spite of their simplicity, FBM’s capture the most
important ingredients of the failure process and make it also
possible to obtain several characteristic quantities of high
interest in closed analytic form. Based on FBM’s important
results have been obtained for the macroscopic response of
the loaded specimen �7� and for the temporal �8–11� and
spatial structure of damage on the microlevel. In the frame-
work of FBM’s the analogy of fracture and critical phenom-
ena �12–15� has also been addressed, which is of high prac-
tical importance for the forecasting of imminent failure of
loaded systems �9,16�.

Fiber bundle models have also been adopted to study the
failure of glued interfaces of solid blocks �17–20�. Such in-
terfaces as a part of complex constructions are assumed to
sustain various types of external loads. In fiber-reinforced
composites, where fibers are embedded in a matrix material,

*
Electronic address: raischel@ica1.uni-stuttgart.de

1539-3755/2006/73�6�/066101�12� 066101
the fabrication of the fiber-matrix interface strongly affects
the mechanical performance of the composite. Very recently
we have shown that under shear loading of glued solid
blocks, the interface elements may suffer not only stretching
but also bending �21�. In order to capture this effect we pro-
posed to discretize the interface in terms of beams which can
be elongated and bent and break due to both deformation
modes in a complex way. During the gradual failure of inter-
faces of solid blocks under shear, damaged regions of the
interface can still transmit load contributing to the overall
load bearing capacity of the interface. This can occur, for
instance, when the two solids remain in contact at the failed
regions and exert friction force on each other. In many ap-
plications the glue between the two interfaces has disordered
properties but its failure characteristics are not perfectly
brittle; the glue under shear may also yield carrying a con-
stant load above the yield point.

We present an extension of models of the shear failure of
glued interfaces considering that surface elements after fail-
ure still can have a certain load-bearing capacity. The disor-
dered interface is represented by a parallel set of fibers with
random breaking thresholds and linearly elastic behavior un-
til failure. The broken fibers are assumed to carry a constant
load which is a fraction 0���1 of their failure load. Vary-
ing the value of � the model interpolates between the per-
fectly brittle ��=0� and perfectly plastic ��=1� constitutive
behavior of fibers. Based on analytic calculations and com-
puter simulations, we show that the finite load-bearing ca-
pacity of failed fibers has a substantial effect on both the
macroscopic response and microscopic damage process of
the fiber bundle. When the load redistribution following fiber
failure is short ranged, an interesting phase transition is re-
vealed at a specific value of �.
©2006 The American Physical Society-1
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II. MODEL

In order to model the shear failure of glued interfaces, we
recently introduced a model �21� which represents the inter-
face as an ensemble of parallel beams connecting the sur-
faces of two rigid blocks. The beams are assumed to have
identical geometrical extensions �length l and width d� and
linearly elastic behavior characterized by the Young modulus
E. In order to capture the failure of the interface, the beams
are assumed to break when their deformation exceeds a cer-
tain threshold value. Under shear loading of the interface,
beams suffer stretching and bending deformation, resulting
in two modes of breaking. The stretching and bending defor-
mation of beams can be expressed in terms of a single
variable—i.e., longitudinal strain �=�l / l—which enables us
to map the interface model to the simpler fiber bundle mod-
els. The two breaking modes can be considered to be inde-
pendent or combined in the form of a von Mises–type break-
ing criterion. The strength of beams is characterized by the
two threshold values of stretching �1 and bending �2 a beam
can withstand. The breaking thresholds are assumed to be
randomly distributed variables of the joint probability distri-
bution p��1 ,�2�. The randomness of the breaking thresholds
is supposed to represent the disorder of the interface mate-
rial. After breaking of a beam the excess load has to be
redistributed over the remaining intact elements. In Ref. �21�
we presented a detailed study which demonstrated that the
beam model of sheared interfaces with two breaking modes
can be mapped into a simple fiber bundle model of a single
breaking mode by an appropriate transformation of the fi-
bers’ strength disorder.

In the present paper, we extend our model by taking into
account that failed surface elements can still carry some ex-
ternal load, increasing the load bearing capacity of the dam-
aged interface. For simplicity, our study is restricted to dis-
cretizing the interface in terms of fibers which could then be
further generalized to beams �21�. A bundle of parallel fibers
is considered with breaking thresholds �th in the interval
0��th��th

max with a probability density p��th� and distribu-
tion function P��th�=�0

�thp��th� �d�th� . We assume that after the
breaking of a fiber at the failure threshold �th

i , it may retain a
fraction 0���1 of its ultimate load �th

i ; i.e., it will continue
to transfer a constant load ��th

i between the surfaces. This
assumption can be interpreted so that at the damaged areas of
the interfaces the two solids still remain in contact, exerting,
for instance, a friction force which may contribute to the
overall load-bearing capacity. In many applications the glue
between the two interfaces has disordered properties but its
failure characteristics is not perfectly brittle; the glue under
shear may also yield. The constitutive behavior of single
fibers is illustrated in Fig. 1. Note that the load carried by the
broken fibers is independent of the external load; further-
more, it is a random variable due to the randomness of the
breaking thresholds. Varying the value of �, the model inter-
polates between the perfectly brittle failure ��=0� and per-
fectly plastic ��=1� behavior of fibers. The load stored by
the failed fibers reduces the load increment redistributed over
the intact fibers, which strongly affects the process of gradual

failure occurring under quasistatic loading of the interface. In
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the following we present a detailed study of the model sys-
tem, varying the strength of plasticity �. For the range of
load sharing the two limiting cases of global and local load
redistributions will be considered after failure events.

III. TRANSITION TO PERFECT PLASTICITY

Assuming global load sharing �GLS� after fiber breaking,
the constitutive equation of the interface can be cast into a
closed form. At an externally imposed deformation � the
interface is a mixture of intact and broken fibers, which both
contribute to the load-bearing capacity of the interface. Since
the broken fibers retain a fraction � of their failure load, at
the instant of fiber breaking only the reduced load
�1−���th

i is redistributed over the intact fibers. Since the
fraction of fibers having breaking threshold in the interval
�� ,�+d�� can be obtained as p���d�, the constitutive equa-
tion ���� reads as

�1�

where the integration is performed over the entire load his-
tory. The first term labeled �DFBM provides the load carried
by the intact fibers, which corresponds to the classical dry
fiber bundle model �DFBM� behavior �3,8,22�. The constitu-
tive law of DFBM’s is recovered in the limiting case �=0,
when the complete load of the failed fiber is transferred to
the remaining intact fibers of the bundle. In the second term
�Pl, which accounts for the load carried by the broken fibers,
the integral is calculated over the entire load history of the
interface up to the macroscopic deformation �. It can be seen
in Eq. �1� that the value of � controls the relative importance
of the elastic and plastic terms influencing the macroscopic
response ���� and also the microscopic damage process of
the system. When � is increased, less load is transferred to
the intact fiber and in the limiting case �=1 failed fibers
retain their entire load, so no load transfer occurs. In this
report, we explore the influence of the parameter � when it is
tuned between these two extremal cases. In the following
calculations the value of the fibers’ Young modulus was set
to unity E=1.

We note that the plastic fiber bundle model resembles up
to some extent to the continuous damage fiber bundle model

FIG. 1. Constitutive behavior of a single fiber: the fiber shows
linearly elastic behavior up to the breaking threshold �th

i ; then, it
keeps a fraction 0���1 of the ultimate load ��th

i .
�CDFBM� worked out in Refs. �11,23�. The main assumption
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of the CDFBM is that due to the activation of certain internal
degrees of freedom, the fibers undergo a gradual softening
process reducing their Young modulus in consecutive partial
failure events. The fibers always remain linearly elastic but
with a Young modulus E�k�=akE, where the multiplication
factor 0���1 describes the stiffness reduction in a single
failure event and k denotes the number of failures occurred.
If the fibers can fail only once �k=1� and keep their stiffness
value constant, the constitutive law of the system reads as

���� = E��1 − P���� + aE�P��� . �2�

It was demonstrated in Refs. �11,23� that increasing the num-
ber of times k the fibers can fail, the CDFBM develops a
plastic plateau, however with a mechanism completely dif-
ferent from the one considered here.

It is instructive to consider two fundamentally different
cases of disorder distributions P���—namely, bounded and
unbounded ones, where the largest breaking threshold �th

max

takes a finite value or goes to infinity, respectively. In this
report, we focus on two specific realizations; i.e., a uniform
distribution between 0 and �th

max

P��th� =
�th

�th
max , 0 � �th � �th

max, �3�

and distributions of the Weibull type

P��th� = 1 − e−��th/��m
�4�

are considered where � and m denote the characteristics
strength and Weibull modulus of the distribution, respec-
tively. For our study the Weibull distribution has the advan-
tage that the amount of disorder in the failure thresholds can
easily be controlled by the value of m.

The functional form of the constitutive behavior ���� is
shown in Fig. 2 for both disorder distributions, Eqs. �3� and
�4�. It is interesting to note that for �	1 there always exists
a maximum of ����, just as in the case of the DFBM. Under-
stress-controlled loading conditions, macroscopic failure oc-
curs at the maximum of ���� so that the position and value
of the maximum define the critical stress �c and strain �c of
the bundle, respectively. It can be observed in Fig. 2 that the
value of �c and �c are both higher than the corresponding
values of DFBM, indicating that the presence of plastic fi-
bers increases the macroscopic strength of the bundle. The
decreasing part and the plateau of ���� can be realized under
strain-controlled loading conditions gradually increasing �.
Under strain control the local load on the fibers is determined
by the externally imposed deformation so that there is no
load redistribution after fiber failure. The fibers break one
by one in the increasing order of their failure thresholds
�th

i =E�th
i . When the deformation � approaches the maximum

value of the breaking thresholds �th
max=�th

max /E, all fibers must
fail gradually so that the load of intact fibers �DFBM tends to
zero, while that of the broken fibers �Pl takes a finite

asymptotic value
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�Pl → �̃ = �E�
0




��p����d�� = ���th	 , �5�

where the integral is equal to the average fiber strength ��th	.
When the strength of plasticity � is increased, the critical
strain �c and stress �c and furthermore, the asymptotic stress
of the plateau �̃ increase. The value of the critical deforma-
tion �c can be obtained by differentiating Eq. �1� with respect
to � and calculating the root �22�

1 − P��c� − �cp��c��1 − �� = 0, �6�

from which the critical stress follows as �c=���c�. Equation
�6� implies that in the limiting case of �→1 the critical
strain �c tends to the maximum of the breaking thresholds
�th

max, where P��th
max�=1. For the uniform distribution, Eq. �3�,

we obtain

�c =
�c

0

1 − �/2
, hence �c →

�→1
2�c

0 = �th
max. �7�

Here �c
0 denotes the critical strain of the DFBM �c

0=�th
max /2,

which can be obtained by setting �=0 in Eq. �6�. It follows
that for unbounded threshold distributions like the Weibull
distribution, �c diverges so that perfect plasticity is only
reached in the limit �c→
. The functional form of the di-
vergence is not universal, and due to the structure of the third

FIG. 2. Constitutive behavior ���� of the plastic fiber bundle for
uniform �a�, �b�, �c� and Weibull distribution with m=2 �d�, �e�, �f�
at �=0.2 �a�, �d�, �=0.5 �b�, �e�, and �=1.0 �c�, �f�. The contribu-
tions of intact �DFBM and failed fibers �Pl are also shown. Note that
�DFBM is identical with the constitutive curve of simple dry fiber
bundle models.
term on the left-hand side of Eq. �6�, �c depends on the
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specific form of p���. For the Weibull distribution, �c as a
function of � reads as

�c = �c
0�1 − ��−1/m, where �c

0 = �
 1

m
�1/m

, �8�

for any Weibull exponent m. Parallel to this, the decreasing
part and the plateau of the constitutive curve ���� disappear
so that �c and �̃ converge to the same finite value, which is
the average fiber strength ��th	:

�̃ → ��th	 and �c → ��th	 . �9�

The average fiber strength ��th	 can be determined as

��th	 =
�th

max

2
and ��th	 =

1

m
�
 1

m
� �10�

for the uniform and Weibull distributions, respectively. Here
� denotes the gamma function.

In order to illustrate this behavior, Fig. 3 presents consti-
tutive curves for Weibull distributed fiber strength obtained
by computer simulations of stress-controlled loading up to
the critical point with �=1 and m=2. It is apparent that in
the limiting case of �→1 the constitutive curve ���� reaches
a plateau, indicating a perfectly plastic macroscopic state of
the system. The position of the maximum �c of the constitu-
tive curves—i.e., the ending point of the curves—rapidly in-
creases as � approaches 1, while the value of the maximum
�c tends to a finite value. In agreement with the analytic
predictions, Eq. �8�, simulations confirmed that �c diverges
as a power law whose exponent depends on the parameters
of the strength distribution �see Fig. 4�.

Controlling the external stress, the constitutive curve of
the system, Fig. 3, can only be realized up to the maximum,
since at the critical load �c abrupt failure of the bundle oc-
curs, breaking all the surviving intact fibers in a large burst.

FIG. 3. �Color online� Simulations of stress controlled loading
of a bundle of N=1.6106 fibers with Weibull distributed breaking
thresholds ��=1, m=2�. For clarity, the occurrence of macroscopic
failure is indicated by vertical lines. Increasing � the constitutive
behavior becomes perfectly plastic.
The fraction � of fibers which break in the final burst caus-
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ing global failure can be determined as �=1− P(�c���),
which is illustrated in Fig. 5 as a function of 1−� for the
specific case of a Weibull distribution

���� = e−1/m�1−��. �11�

It can be observed that as the system approaches the state of
perfect plasticity �→1, � tends to zero. This demonstrates
that more and more fibers break before global failure occurs,
and perfect plasticity is obtained when the strongest fiber
fails at the maximum of ���� �compare also to Fig. 3�. This
argument also implies that for �→1, the difference of the
microscopic damage process under stress- and strain-
controlled loading disappears, the fibers break one by one
without triggering avalanches of breakings.

IV. AVALANCHES OF FIBER BREAKINGS

Under stress-controlled loading of the fiber bundle, the
load dropped by a breaking fiber is redistributed over the
intact ones. This load increment can give rise to further
breakings which then may trigger an entire avalanche of fail-
ure events. The distribution D��� of avalanche sizes � is an
important quantity for the dynamical description of the
loaded system. For the case of classical DFBM’s ��=0� un-

FIG. 4. Critical strain �c �a� and critical stress �c �b� as a func-
tion of 1−� for a Weibull distribution with �=1, m=2. Symbols:
simulation results. Solid lines: analytical expressions Eqs. �8�–�10�.

FIG. 5. Fraction of intact fibers �=1− P(�c���) at the point of
macroscopic failure �c vs 1−� for a Weibull distribution of �=1,
m=2. Circles: GLS simulation results. Solid line: analytical

solution, Eq. �11�.
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der GLS conditions the avalanche size distribution D��� can
be obtained analytically �8,24� as an integral, from which the
asymptotic form of the distribution for large avalanches
proved to be a power law

D��� � �−5/2, � → 
 . �12�

The value of the exponent 5 /2 is universal; it does not de-
pend on the details of the disorder distribution of the failure
thresholds �8,24�.

In order to obtain the analytical solution for the avalanche
distribution in the presence of plastic fibers ��0, we can
follow the derivation of Refs. �8,24�, taking into account that
the average number of fibers, a�� ,��d�, which break as a
consequence of the load increment caused by a fiber break-
ing at the deformation � is reduced by a factor of �1−��:

a��,��d� =
�p����1 − ��

1 − P���
d� . �13�

Taking into account that the critical deformation �c where
macroscopic failure occurs also depends on �, the avalanche
size distribution D��� can be cast in the form

D���
N

=
��−1

�!
�

0

�c���

a��,���−1e−a��,����1 − a��,���p���d� .

�14�

For the specific case of the Weibull distribution with an ar-
bitrary modulus m the general equation �14� can be written in
the form

D��,�� =
��−1

�!�m�1 − ���2�c
�+1 ����,�c� + �c

�m�1 − ��e−�c� ,

�15�

where �c depends on the amount of disorder m and on the
strength of plasticity �:

�c = � +
1

m�1 − ��
. �16�

In Eq. �15�, � denotes the incomplete gamma function.1 Two
limiting cases can be distinguished in the solution: first, for
�→0 the classical power-law dependence, Eq. �12�, is re-
covered. This analytic solution is illustrated in Fig. 6 for a
Weibull distribution with m=2, where a power law of D���
is apparent for �	0.9. However, for the limiting case of
�→1, we have to consider the behavior of the argument �c
of the analytic solution, Eq. �15�. For ��1, there will be a
regime of � values where the term 1/ �m�1−��� dominates
over �, resulting in a faster decay of the distribution D���
than any power. Still, for any values of � in the limiting case
���c���, the usual mean-field power-law behavior, Eq.
�12�, is asymptotically recovered. Avalanche-size distribu-
tions D��� obtained from computer simulations at various
different values of � are presented in Fig. 7. In good quan-
titative agreement with the analytic predictions, the numeri-

1There are several definitions of the incomplete gamma function,
x −t a−1
we use ��a ,x�=�0e t dt
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cal results can be well fitted by a power law of exponent 5 /2
for moderate values of �. However, for ��0.9 strong devia-
tions from the power law, Eq. �12�, can be observed for
intermediate avalanche sizes 1���103, which appears to
be an exponential decay. Although in the analytical solution
the asymptotic power-law behavior is still visible for very
large � �see Fig. 6�, computer simulations in Fig. 7 show
solely a very steep decrease. It can be seen in the analytic
solution in Fig. 6 that the relative frequency of avalanches of
size ��O�103� is D=O�10−30� for �=0.99, so it would re-
quire extremely large systems to count any such events. The
size of the largest avalanche �max is plotted in Fig. 8 as a
function of �. Obviously, �max is a monotonically decreasing
function of � whose decrease gets faster in the regime where

FIG. 6. Analytic solution of the avalanche size distribution D���
at various different values of �. For �→0 the usual power-law
distribution is recovered, whereas for �→1 an exponential decay of
D��� is obtained. For the specific calculations a Weibull distribu-
tion was used with m=2.

FIG. 7. Distribution D��� of avalanches of size � for various
values of � obtained by computer simulations for a system of
N=1.6107 fibers with Weibull-distributed failure thresholds m
=2. Satisfactory agreement is obtained with the analytic results pre-

sented in Fig. 6.
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the distribution D��� exhibits the crossover to the faster-
decaying form.

An important consequence of the analytic solution, Eqs.
�15� and �16�, is that the characteristic avalanche size where
the crossover occurs from a power law to a faster-decaying
exponential form also depends on the amount of disorder;
i.e., the stronger the disorder is, the larger the crossover size
gets at a given �.

V. LOCAL LOAD SHARING

From experimental and theoretical point of view, it is very
important to study the behavior of the plastic bundle when
the interaction of fibers is localized. In the case of local load
sharing �LLS� under stress-controlled external loading con-
ditions, the load dropped by the broken fiber is redistributed
in a local neighborhood of the fiber, giving rise to high stress
concentration in the vicinity of failed regions. Stress concen-
tration leads to correlated growth of clusters of broken fibers
�cracks�, which plays a crucial role in the final breakdown of
the system; i.e., macroscopic failure of the bundle occurs due
to the instability of a broken cluster which then triggers an
avalanche of failure events where all the remaining intact
fibers break. This effect typically leads to a more brittle con-
stitutive behavior of the system and the appearance of non-
trivial spatial and temporal correlations in the damage pro-
cess �17,23,25,26�.

In the plastic bundle, after a fiber breaks it still retains a
fraction � of its failure load �th so that only the amount
�1−���th is redistributed over the intact fibers in the neigh-
borhood. It implies that the load-bearing broken fibers reduce
the stress concentration around failed regions, giving rise to
stabilization which also affects the temporal and spatial evo-
lution of damage during the loading process.

In the following we consider a bundle of N fibers orga-
nized on a square lattice of size LL with periodic boundary
conditions. The fibers are assumed to have Weibull-
distributed strength, Eq. �4�, where the value of � is always

FIG. 8. Size of the largest avalanche in a GLS simulation with a
Weibull distribution of m=2.
set to unity and for the Weibull modulus two different values
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are considered: m=2 �large disorder� and m=4 �smaller dis-
order�. After a failure event the load dropped by the broken
fiber �1−���th

i is equally redistributed over the nearest and
next-nearest intact neighbors in the square lattice; i.e., the
local neighborhood of a broken fiber contains at most eight
intact sites. Stress-controlled simulations have been carried
out for system sizes ranging from L=33 to L=801, varying
the strength of plasticity 0���1.

A. Macroscopic response

It has been shown for DFBM’s where broken fibers carry
no load, that the macroscopic response of the bundle when
the interaction of fibers is localized follows the constitutive
law of the corresponding GLS system with a reduced critical
strain and stress; i.e., the LLS bundle behaves macroscopi-
cally in a more brittle way than its GLS counterpart
�23,25,26�. Figure 9 shows the constitutive curve of a plastic
bundle of size L=401 for several different values of �. It can
be observed that for ��0 the constitutive curve exhibits the
usual LLS behavior; i.e., the macroscopic failure is preceded
by a relatively short nonlinear regime and global failure oc-
curs in an abrupt manner. The position of the macroscopic
failure defines the value of the critical strain �c

LLS and stress
�c

LLS. It is very interesting to note that when � is increased,
the LLS constitutive curves practically recover the behavior
of the corresponding GLS system; i.e., for ��0.4 the mac-
roscopic failure occurs when reaching the plateau of ����.

The convergence of the LLS system to the GLS macro-
scopic behavior is better seen in Fig. 10 where the relative
difference of the critical stresses �c

GLS��� and �c
LLS��� of the

global and local load-sharing bundles is presented. It can be
seen in the figure that there exists a threshold value �c of �
above which the macroscopic response of the LLS bundle
becomes very close to the corresponding GLS system, while

FIG. 9. �Color online� Constitutive law ���� of the LLS bundle
obtained by computer simulations of a system of size L=401 for
several different values of �. The inset shows a magnified view of
���� for the regime �	0.4. For clarity, vertical lines indicate the
location of macroscopic failure. For the breaking thresholds a
Weibull distribution was used with m=2.
-6
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below �c the constitutive behavior of the bundle changes
continuously from the usual LLS response with a high de-
gree of brittleness ��=0� to the global load sharing behavior.
It seems that at �c a continuous transition occurs between the
two regimes. The transition indicates that as a consequence
of the reduction of stress concentration around failed fibers,
the bundle can sustain higher external loads and is able to
keep its integrity until the maximum of ���� is reached.

B. Bursts of fiber breakings

The evolution of the macroscopic response of the system
with increasing � is accompanied by interesting changes of
the damage process on the microlevel, characterized by ava-
lanches of fiber breakings and the cluster structure of failed
regions. The avalanche statistics presented in Fig. 11 shows
remarkable features. For ��0, due to the high stress con-
centration around failed fibers, the LLS bundle can only tol-
erate small avalanches so that the avalanche-size distribution
D��� decays rapidly. With increasing � the higher amount of
load kept by broken fibers can stabilize the bundle even after
larger bursts; hence, the cutoff of the distributions moves to
higher values. It is interesting to note that also the functional
form of the distribution D��� changes; i.e., when � ap-
proaches �c the exponential cutoff disappears and the distri-
bution becomes a power law

D��� � �−� �17�

for large avalanches. The exponent � of the power law was
determined numerically as �LLS=1.5±0.07, which is signifi-
cantly lower than the mean-field value �GLS=2.5 �8�. In-
creasing � above the critical point an exponential cutoff oc-
curs and the power-law regime of large avalanches gradually
disappears. Comparing Fig. 11 to the corresponding GLS
results presented in Fig. 7, it is apparent that above �c the
LLS distributions D��� have the same functional form and

FIG. 10. The relative difference of the critical stresses �c
GLS and

�c
LLS of global and local load-sharing systems as a function of � for

two different values of the Weibull modulus m. The vertical lines
indicate the critical values of �, which were obtained in Sec. V C.
follow the same tendency with increasing � as the mean-field
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results. It can be concluded that the avalanche statistics pre-
sents the same transitional behavior between the local load-
sharing and mean-field regimes as observed for the macro-
scopic response. The same value of �LLS was obtained
numerically for m=4, indicating the universality of the
exponent with respect to the strength of disorder. The transi-
tion is more evident in the inset of Fig. 11, where the size
of the largest avalanche �max is plotted as a function of
�. The sharp peak indicates the transition point whose posi-
tion defines �c, while in GLS the largest avalanche �max was
a monotonically decreasing smooth function �compare to
Fig. 8�.

C. Spatial structure of damage

Gradually increasing the external load in the fiber bundle,
the weakest fibers break first in an uncorrelated manner.
Since the load is redistributed solely over the intact neigh-
bors of the broken fiber, the chance of fiber breakings in-
creases in the vicinity of damage regions. This effect can
result in correlated growth of clusters of broken fibers with a
high stress concentration around their boundaries. The larger
the cluster is, the higher stress concentration arises. Global
failure of the bundle occurs when, due to an external load
increment, one of the clusters becomes unstable and grows
until all fibers break. The spatial structure of the damage
emerging when the interaction of fibers is localized can be
characterized by studying the statistics and structure of clus-
ters of broken fibers. Former studies of the limiting case of
very localized interactions have revealed that the size of the
largest cluster in the system is rather limited; furthermore, it
is independent of the system size. Since the clusters are rela-
tively small, merging of neighboring clusters does not occur
frequently. The clusters themselves are found to be compact
objects dispersed homogeneously over the cross section of
the bundle �23,27,28�.

In Fig. 12 the latest stable configuration of the bundle is

FIG. 11. Avalanche-size distributions D��� obtained by com-
puter simulations for the system size L=401 with local load shar-
ing, using Weibull-distributed failure thresholds m=2. The power-
law fit is demonstrated for �=0.4. In the inset the largest avalanche
�max is plotted versus �.
presented just before catastrophic failure occurs at the critical
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load �c
LLS for several different values of �. For ��0 we note

only small clusters of broken fibers as is expected for LLS
bundles �Fig. 12�a��. With increasing �, these clusters grow
and adjacent clusters can even merge, further increasing the
typical cluster size �Fig. 12�b��. Around the critical value of
��0.4, a spanning cluster of broken fibers seems to appear
�Fig. 12�c��, whereas for higher values of ��0.4 almost all
fibers have failed �Fig. 12�d�� already by the time the critical
stress is reached. The existence of very large clusters is the
direct consequence of the increased load-bearing capacity of
broken fibers.

Clusters of broken fibers were identified in the square
lattice using the Hoshen-Kopelman algorithm. We evaluated
the distribution of cluster sizes n�S� in the last stable con-
figuration just before macroscopic failure occurs. The behav-
ior of n�S� shows again the transitional nature we have ob-
served for other quantities. It can be seen again in Fig. 13
that a well-defined �c exists which separates two regimes:
for �	�c the clusters are small and n�S� has a steep de-
crease. Approaching �c, the cluster size distribution n�S�
tends to a power law

n�S� � S−�, �18�

where the value of the exponent was obtained as
�=2.35±0.08 which is higher than the corresponding expo-
nent of two-dimensional �2D� percolation on a square lattice
�=187/91�2.0549 �29�. Note that in the regime where
spanning clusters exist ���0.4�, the distribution n�S� con-
tains only the finite clusters.

In order to characterize the evolution of the cluster struc-
ture when � is changed and to reveal the nature of the tran-

FIG. 12. Latest stable configuration in LLS simulations of a
system of size L=401, with a Weibull strength distribution m=2 at
different values of the control parameter � �a� 0.0, �b� 0.35, �c� 0.4,
and �d� 0.6. The strength of the largest cluster P
 in the lattices are
�a� 0.003, �b� 0.097, �c� 0.517, and �d� 0.999. Broken and intact
fibers are indicated by black and white, respectively.
sition occurring at �c, we calculated the average cluster size
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Sav as the ratio of the second and first moments of the cluster
size distribution

Sav =
m2

m1
. �19�

The kth moment mk of the distribution n�S� is defined as

mk = 
S

Skn�S� − Smax
k , �20�

where the largest cluster is excluded from the summation.
Figure 14 presents Sav as a function of � for different
system sizes ranging from L=33 to L=801. It can be seen
in the figure that for each value of L the average cluster
size Sav has a maximum at a well-defined value of �, which
becomes a sharp peak with increasing L; i.e., the peak
becomes higher and narrower for larger systems. The
observed behavior is typical for continuous phase transitions,

FIG. 13. Distribution n of the size S of broken clusters in LLS
simulations with a Weibull distribution m=2, for different values of
�. The spanning clusters were excluded from the distributions for
��0.4.

FIG. 14. Average cluster size Sav=m2 /m1 as a function of � for
different system sizes L. Simulation results were obtained with a

Weibull distribution m=2.
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where the position of the maximum defines the critical
point of the finite-size system. Based on the analogy to
critical phenomena we tested the validity of the scaling law
Sav�L�/�����−�c�L1/��, where � denotes the scaling func-
tion of Sav �29,30�. The results presented in Fig. 15 were
obtained by varying the values of the critical point �c and of
the critical exponent of the susceptibility � and correlation
length � until the best data collapse was reached. It can be
observed in Fig. 15 that in the vicinity of the critical point �c
a good quality data collapse is obtained using the values
�c=0.385±0.01, �=2.0±0.15, and �=1.0±0.1, where the
critical exponents are only slightly different from the perco-
lation exponents of �=43/18�2.389 and �=4/3�1.33 in
2D �29�.

At the critical point a spanning cluster of broken fibers
occurs which is much larger than the other clusters. In order
to characterize the strength of the spanning cluster we calcu-
lated the probability P
��� that a failed fiber belongs to the
largest cluster. For percolation the quantity P
 plays the role
of the order parameter whose value distinguishes the phases
of the system. Similarly to percolation lattices, we find nu-
merically a sharp rise from P
=0 to P
=1 at �c�0.4; see
Fig. 16. When the system size L is increased P
 tends to a
step function indicating that the transition becomes sharper.
Assuming the scaling law P
�L−�/�����−�c�L1/�� of the
order parameter for finite-size systems, where � denotes the
scaling function and � is the order parameter exponent
�29,30�, we replotted the data in Fig. 17. The good quality of
the data collapse was obtained with the parameter values
�c=0.33±0.01, �=0.15±0.06, and �=0.95±0.1. Note that
the value of � agrees well with the one determined by the
finite-size scaling of the average cluster size Sav; larger de-
viations occur only for the critical point �c. The order pa-
rameter exponent � is compatible with the percolation value
�=5/36�0.13.

D. Random crack nucleation versus crack growth

The failure mechanism of disordered materials and its re-

FIG. 15. Finite-size scaling of the average cluster size Sav pre-
sented in Fig. 14. The good quality collapse obtained enables us to
determine the value of the critical exponents � and � with a rela-
tively good precision.
lation to the amount of disorder has long been discussed in
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the literature �1,2,23,28,31–34�. When the material has a low
degree of disorder only a small amount �if any� of damage
occurs prior to macroscopic failure. In this case even the
nucleation of a single microcrack can lead to localization and
abrupt failure of the system. Increasing the amount of disor-
der, the macroscopic failure is preceded by a larger and
larger precursory activity; i.e., a large amount of damage
accumulates and local breakings can trigger bursts of break-
ing events �8�. Since cracks nucleate randomly, the process
of damage before localization resembles percolation up to
some extent. Stress concentration builds up around failed
regions which might lead to correlated growth of the nucle-
ated cracks �12,23,31,35�. Increasing the strength of disorder,
correlation effects become less dominating and in the limit of
infinite disorder the damage accumulation process can be
mapped to percolation �36�.

We have shown above that in the plastic fiber bundle
model �PFBM�, the load-bearing capacity of broken fibers
has a substantial effect on the process of failure when the
load redistribution is localized due to the reduction of the

FIG. 16. Order parameter P
 vs � for several system sizes L
with the Weibull index m=2.

FIG. 17. Finite size scaling of the order parameter P
 presented
in Fig. 16. The parameter values used to obtain the best quality data
collapse agree well with the ones determined by the finite size scal-

ing of Sav.
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stress concentration along cracks. In order to give a quanti-
tative characterization of damage accumulation in our model,
we determined the fraction of broken fibers pb at global fail-
ure �c as a function of the strength of plasticity �. The quan-
tity pb can also be interpreted as the probability 0� pb�1
that a randomly chosen fiber in the bundle is broken which
makes it possible to compare the spatial structure of damage
to percolation lattices �29� generated with the occupation
probability p= pb �1,2,26,36�. The results are presented in
Fig. 18 for the system size L=401 and Weibull parameters
m=2 and m=4 plotting also the corresponding GLS results
for comparison. In the case of local load sharing, when the
failure load of fibers is almost entirely redistributed locally
���0� only a small damage can accumulate up to global
failure pb

LLS�0.1–0.2, keeping the integrity of the system.
Comparing the curves of different Weibull indices m it
follows that the stronger the disorder is, the larger amount
of damage the system can tolerate at the same value of �. In
the vicinity of the respective �c, the breaking fraction pb

LLS

rapidly increases and converges to the maximum value
pb

LLS�1, which implies that in the regime ���c practically
no localization occurs, and the bundle can remain stable until
almost all fibers break.

It is instructive to compare this behavior to the case of
GLS, where those fibers break up to the critical point whose
breaking threshold falls below �c; hence, pb

GLS��� can simply
be obtained as pb

GLS= P(�c���). It can be seen in Fig. 18 that
under global load sharing for ��0 a significantly larger
fraction of fibers fails without destroying the system than in
the LLS bundle. The breaking fraction pb is a monotonically
increasing function of � irrespective of the range of load

FIG. 18. The fraction of broken fibers pb at �c as a function of
� for fiber bundles of LLS and GLS with different strengths of
disorder m=2 and m=4. The vertical line indicates the critical point
obtained as the position of the maximum of the average cluster size
�see Fig. 14�. The critical probability of percolation pc on the square
lattice is indicated by the horizontal line. Note that for both disorder
distributions in LLS, the location where pb

LLS exceeds pc practically
coincides with the corresponding critical point �c, indicating the
percolation nature of the transition.
sharing; however, in the vicinity of the critical point of LLS
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bundles pb
LLS exceeds the smoothly rising GLS curves pb

GLS.
Note that depending on the threshold distribution P of fibers,
even at �=0 the value of pb

GLS can be smaller or larger than
the critical percolation probability pc of the corresponding
lattice type, since �contrary to fuse networks �31,34� or dis-
crete element models �37�� fracture in fiber bundles is not
related to the appearance of a spanning cluster of failed ele-
ments. Varying � as a control parameter, formally the GLS
results could be perfectly mapped onto a percolation prob-
lem: at the critical value of the control parameter �c

GLS de-
fined as P(�c��c

GLS�)= pc a spanning cluster occurs, which
has a fractal structure, the average size of finite clusters has a
maximum at the critical point, and the cluster size distribu-
tion exhibits gap scaling �29�. However, this percolation is
not related to the point of failure of the GLS bundle; the
analogy to percolation is based purely on geometrical prop-
erties without any physical relevance.

Figure 18 shows that for localized load sharing the phase
transition occurs when the damage fraction pb

LLS reaches the
critical percolation probability pc of the corresponding lattice
type. Due to the very localized load sharing, only short-range
correlations arise in the system which are further moderated
by the finite load-bearing capacity of broken fibers. Hence, in
the vicinity of the transition point pb

LLS��c�� pc holds and the
evolution of the microstructure of damage shows strong
analogy to percolation lattices. It can be seen in Table I that
the critical exponents of the plastic fiber bundle model are
slightly different from the corresponding exponents of per-
colation; furthermore, the usual scaling relations of percola-
tion critical exponents �29� are not fulfilled within the error
bars. It has been shown for percolation that correlated occu-
pation probabilities lead to the same critical behavior as ran-
dom percolation when the correlations are short ranged
�38,39�; however, long-range correlations result in changes
of the critical exponents �38�. It is interesting to note that the
value of the correlation length exponent � of the PFBM is
smaller than the value of random percolation which is con-
sistent with the presence of relevant correlations �38�. We
would like to emphasize that contrary to global load sharing,
this percolationlike transition has important physical conse-
quences on the behavior of the fiber bundle. The failure pro-

TABLE I. Summary of the critical exponents of the plastic fiber
bundle model with local load sharing. For comparison the value of
the corresponding critical exponents of percolation are also shown.
For the perimeter fractal dimension Dp of the PFBM a range is
given.

Critical exponents PFBM Percolation

� 0.15±0.06 5/36�0.13

� 2.0±0.15 43/18�2.38

� 2.35±0.08 187/91�2.05

� 1.0±0.1 4/3�1.33

D 2.0 D=91/48�1.896

Dp 1.0–2.0 7/4=1.75

� �bursts� 1.5±0.07
cess of the bundle is dominated by the competition of fiber
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breaking by local stress enhancement due to load redistribu-
tion and by local weakness due to disorder. Our detailed
analysis revealed that the relative importance of the two ef-
fects is controlled by the parameter �. Below the critical
point �	�c high stress concentration can develop around
cracks so that the failure of the bundle occurs due to local-
ization. Above the critical point ���c the macroscopic re-
sponse of the LLS bundle becomes practically identical with
the GLS constitutive behavior, showing the dominance of
disorder. It is important to note that the size distribution of
bursts of simultaneously failing fibers becomes a power law
at the critical point �c with an exponent � equal to the value
recently predicted for GLS bundles of so-called critical fail-
ure threshold distributions �9,10�. This can be explained such
that the large avalanches of the power-law distribution occur-
ring in the plastic fiber bundle model at �c �see Fig. 11� are
dominated by the strong fibers of the bundle whose strength
distribution is close to critical �9,10�.

The structure of the spanning cluster of the LLS bundle
formed at the critical point �c has also remarkable features
different from the spanning cluster of percolation �29�. The
insets of Fig. 19 present representative examples of the span-
ning cluster of a system of size L=401 at two different dis-
order strengths. It can be observed that the clusters are com-
pact, they practically do not have holes, and there are
no islands of unbroken fibers in the interior of the cluster.
This structure is a direct consequence of the merging
of growing compact clusters where especially large stress
concentrations arise between the cluster surfaces, breaking
the fibers and filling the holes in the spanning cluster. We
note that in the limiting case of very strong disorder a small
amount of intact fibers may survive dispersed over the span-
ning cluster. The result implies that the fractal dimension of
the spanning cluster of the LLS bundle is 2, which should be
compared to the corresponding value of random percolation
D=91/48�1.896 where a finite amount of holes exists �29�

FIG. 19. Structure of the spanning cluster at two different dis-
order strengths in a lattice of size L=401. The perimeter length p�l�
of the cluster is plotted as function of the length l of the yardstick
normalized by the side length l0 of the inscribing square. The insets
present the clusters analyzed.
even for short-range correlated occupation probabilities �39�.
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The perimeter of the spanning cluster, however, has a fine
structure; i.e., it has a large number of peninsulas and valleys
of all sizes. To reveal the structure of the perimeter, we mea-
sured its length p�l� as a function of the length of the yard-
stick l. It can be seen in Fig. 19 that p�l� shows a power-law
dependence on l over almost two decades:

p�l� � l−�p, �21�

where the value of the exponent proved to be �p=0.5±0.03
for a Weibull distribution of fiber strength with m=2. The
power law, Eq. �21�, indicates that the perimeter line is a
fractal with a dimension Dp=1+�p=1.5±0.03. The upper
bound of the scaling range in Fig. 19 can be attributed to the
characteristic size of peninsulas of the spanning cluster, over
which the rough structure of the perimeter disappears. Nu-
merical calculations revealed that the fractal dimension of
the cluster surface Dp is not universal; i.e., it depends on the
strength of disorder of the breaking thresholds. The insets of
Fig. 19 illustrate that a lower amount of disorder gives rise to
a more regular, smoother cluster surface characterized by a
lower value of Dp. For the Weibull index m=4 we obtained
Dp=1.24±0.05, which is significantly smaller than the cor-
responding value of m=2. The surface of damage clusters
should be compared to the hull of the spanning cluster of
percolation with the fractal dimension Dp=7/4=1.75 �40�
�see also Table I�.

VI. SUMMARY

We introduced a fiber bundle model where failed fibers
retain a fraction 0���1 of their failure load. The value of
the parameter � interpolates between the perfectly rigid fail-
ure �=0 and perfect plasticity �=1 of fibers. We carried out
a detailed study of the effect of the finite load-bearing capac-
ity of fibers on the microscopic damage process and macro-
scopic response of fiber bundles considering both global and
local load sharing for the load redistribution after fiber fail-
ure. Analytic calculations and computer simulations revealed
that under global load sharing the macroscopic constitutive
behavior of the interface shows a transition to perfect plas-
ticity when �→1, where the yield stress proved to be the
average fiber strength. Approaching the state of perfect plas-
ticity, the size distribution of bursts has a crossover from the
mean-field power-law form of exponent 2.5 to a faster expo-
nential decay.

When the load sharing is localized it is found that the load
carried by the broken fibers has a stabilizing effect on the
bundle; i.e., it lowers the stress concentration around clusters
of failed fibers which has important consequences on the
microscopic process of fracture and on the macroscopic re-
sponse of the bundle. Extensive numerical calculations
showed that at a specific value �c a very interesting transi-
tion occurs from a phase where macroscopic failure emerges
due to stress enhancement around failed regions leading to
localization, to another phase where the disordered fiber
strength plays the dominating role in the damage process.

On the macrolevel, below the critical point �	�c the
fiber bundle shows a brittle response; i.e., the macroscopic

failure is preceded by a weak nonlinearity, while for ���c
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the constitutive behavior of the LLS bundle becomes practi-
cally identical with the GLS counterpart. Analyzing the evo-
lution of the microstructure of damage with increasing �, the
transition proved to be continuous, analogous to percolation.
Computer simulations revealed that the avalanche-size distri-
bution of fiber breakings becomes a power law at the critical
point with a universal exponent equal to the mean-field ex-
ponent of bundles with critical strength distributions. The
spanning cluster of failed fibers formed at the transition point
proved to be compact with a fractal boundary whose dimen-
sion increases with the amount of disorder. The critical value
�c is not universal; besides the lattice structure, it also de-
pends on the strength of disorder.

The plastic fiber bundle model can be relevant for the
shear failure of interfaces where failed surface elements can
066101-
remain in contact, still transmitting load. Such glued inter-
faces of solids typically occur in fiber composites, where
fibers are embedded in a matrix material. The finite load-
bearing capacity of failed elements of the model can account
for the frictional contact of debonded fiber-matrix interfaces
and also for plastic behavior of the components.
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